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Abstract
The exponential Hilbert space approach is used to link quantum mechanics in a
small system with d-dimensional Hilbert space G, with the collective quantum
behaviour in a large system comprised of d coupled oscillators with Hilbert
space H. In the large system, the expectation value of the mode position operator
Ux describes the location of a quantum state within the chain of d oscillators,
and the expectation value of the mode momentum operator Up describes the
change of the mode position with time. A continuum of modes (d → ∞) is
also considered and in this case these operators obey the commutation relation
[Ux,Up] = iU1. A consequence of this is that uncertainties in the location of
a state and in its momentum obey an uncertainty relation. Displacements and
squeezing in the mode phase space are discussed. For a certain Hamiltonian, the
Ux,Up obey equations of motion which are very similar to those of a harmonic
oscillator. If the system is in an entangled state, the formalism can be used to
quantify concepts like the location of entanglement, and the speed with which
the entanglement propagates.

PACS numbers: 42.50.Dv, 03.65.Ta

1. Introduction

The exponential Hilbert space approach to the Fock space has been introduced in [1]. It has
mainly been used for mathematical questions such as the construction of unitarily inequivalent
representations. In this paper we use this approach in a more physical context. We show
that it can provide a very interesting link between quantum phase space methods of a single
oscillator and quantum techniques in a large system comprised of a continuum of oscillators.

In a recent paper [2] we have introduced the concept of mode phase space in a d-mode
system, comprised of d coupled oscillators. We have defined mode-position and mode-
momentum operators Ux and Up, which act collectively on all oscillators and have eigenvalues
in Zd (the integers modulo d). The expectation value of Ux is the ‘average mode’ in which
the photons are located, and the expectation value of Up shows how fast the mode position
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changes with time. The mode phase space is Zd × Zd . Exponentials of Ux and Up perform
mode displacements of a quantum state in the mode phase space, i.e., they translate it along
the chain of oscillators, and they also change its mode momentum. The mode displacements
form a Heisenberg–Weyl group.

In this paper we first approach this work from a different angle. We show that
the exponential Hilbert space formalism of [1] connects quantum techniques in a ‘small’
d-dimensional Hilbert space G with the collective quantum behaviour in a ‘large’ d-mode
Hilbert space H which describes a system of d coupled oscillators. For example, displacements
in G correspond to mode displacements in H. This formalism can be generalized to the
continuum limit, where we go from the cyclic lattice of d oscillators to a continuum of coupled
oscillators on a straight line (an infinite ‘string’).

The main part of the paper is the study of the continuum limit. In this case the index of
the mode takes all real values, and the Hilbert space H is a continuous tensor product [3–5].
G becomes an infinite-dimensional harmonic oscillator Hilbert space, and the exponential
Hilbert space formalism connects G with the Hilbert space H of the continuum of modes. We
show that the mode position Ux and the mode momentum Up obey the commutation relation
[Ux,Up] = iU1. Based on this we prove an uncertainty relation that involves the mode position
and mode momentum. The quantum state of the system is shared by the oscillators labelled
with x inside the mode uncertainty ellipse, and the rest of the oscillators are close to the
vacuum state. Also the momenta with which the state propagates are those inside the mode
uncertainty ellipse.

Displacements in the mode phase space, which is now R × R, translate a state along the
continuum of oscillators, and they also change its mode momentum. They are collective type
of transformations, and they are very different from displacements within the phase space of
a particular oscillator.

Mode squeezing transformations change the mode uncertainties. A quantum state, which
is shared by the oscillators within the interval (〈Ux〉 − �x, 〈Ux〉 + �x), is transformed into
another state shared by the oscillators in a smaller (or larger) interval, and at the same time the
uncertainty in the mode momentum with which the state propagates increases (or decreases).
They are also collective type of transformations, and they are very different from squeezing
within the phase space of a particular oscillator.

The time evolution of the system is also studied. It is shown that for a certain Hamiltonian
the mode position operator Ux and the mode momentum operator Up obey equations of motion
similar to those of a harmonic oscilator.

The formalism is applicable to all states; regardless of whether they are entangled or not.
However if the states are entangled, the mode uncertainty ellipse can be used to quantify the
location of entanglement and the speed with which entanglement propagates.

2. H as exponential Hilbert space

We consider a system comprised of d harmonic oscillators with Hilbert space H = h⊗· · ·⊗h.
The creation and annihilation operators corresponding to the M mode are

a
†
M = 1h ⊗ · · · ⊗ a† ⊗ · · · ⊗ 1h, aM = 1h ⊗ · · · ⊗ a ⊗ · · · ⊗ 1h,

(1)[
aM, a

†
K

] = δ(M,K), M,K = 0, . . . , (d − 1).

The indices belong in Zd (the integers modulo d). δ(M,K) is Kronecker’s delta; it is equal to
1 when M = K (modulo d). The position and momentum of the Mth oscillator are

qM = 2−1/2
[
a
†
M + aM

]
, rM = 2−1/2i

[
a
†
M − aM

]
. (2)
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We also consider a d-dimensional Hilbert space G comprised of vectors (z0, z1, . . . , zd−1).
For simplicity we use the short-hand notation zM (with M ∈ Zd ) for these vectors. Their
scalar product is

(zM,wM) =
d−1∑
M=0

z∗
MwM. (3)

We introduce a map between vectors in G and coherent states in H as follows:

zM → |{zM}〉coh ≡ |z0〉coh ⊗ · · · ⊗ |zd−1〉coh. (4)

It is easily seen that the scalar product of two coherent states can be written in terms of the
scalar product of the corresponding vectors in G:

[NzNw]−1
coh〈{zM}|{wM}〉coh = exp[(zM,wM)] (5)

where Nz is the normalization coefficient,

Nz = exp
[− 1

2 (zM, zM)
]
. (6)

The total number of photons in the coherent state |{zM}〉coh is

coh〈{zM}|nT |{zM}〉coh = (zM, zM). (7)

It is seen that the normalization of the vectors zM in G is important, because it is related to the
total average number of photons in the corresponding coherent states in H. Therefore in the
Hilbert space G we should consider not only vectors with length equal to one, but all vectors
with all lengths. The coherent states |{zM}〉coh in H are of course normalized to 1.

We next introduce the Fock space defined by G which is the direct sum of all symmetric
tensor products of G

EXP(G) ≡ C ⊕ G ⊕ (G ⊗ G)sym ⊕ · · · (8)

In the space EXP(G) we introduce the ‘exponential states’

EXP[zM ] ≡ 1 ⊕ zM ⊕ 2−1/2(zM ⊗ zM) ⊕ · · · (9)

The first term 1 is the Fock vacuum. It is clear that we use the notation ‘EXP’ for the maps of
equations (8), (9), and the notation ‘exp’ for the usual exponential.

The overlap of two exponential states is

〈EXP[zM ], EXP[wM ]〉 = exp[(zM,wM)]. (10)

Comparison of equation (5) with (10) shows that we can define a one-to-one map between
EXP(G) and H if we identify the exponential states with the coherent states (with appropriate
normalization):

|{zM}〉coh = Nz EXP[zM ]. (11)

Since the coherent states form an overcomplete set of states, we conclude that the spaces
EXP(G) and H are isomorphic and write H = EXP(G).

2.1. General states

The ‘EXP’ map of equation (9) maps all states in G into a subset of H = EXP(G) comprised of
the coherent states only. Physically, the vectors in G describe the distribution of the amplitude
of the coherent states in H in the various modes.
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Superpositions of vectors in G give another vector in G to which corresponds a single
coherent state in H. Superpositions of coherent states in H give all pure states in H. Using the
resolution of the identity for coherent states we show that an arbitrary pure state |s〉 in H can
be written as

|s〉 =
∫

D2zs({zM})|{z∗
M}〉coh, s({zM}) =coh 〈{z∗

M}|s〉, D2z ≡
∏

M∈Zd

d2zM

π
. (12)

2.2. General operators

To a given operator θ acting on G we associate the operator EXP(θ) acting on H defined as
follows:

EXP(θ) ≡ 1G ⊕ θ ⊕ (θ ⊗ θ) ⊕ · · · . (13)

It is easily seen that

EXP(θ)|{zM}〉 = Nz EXP(θ) EXP[zM ] = Nz EXP [θzM ] = NzN−1
θz |θ{zM}〉. (14)

The ‘EXP’ map of equation (13) maps all the operators θ acting on G into a small subset
within the set of all operators acting on H. We can easily show

EXP(1G) = 1H , EXP(θ−1) = [EXP(θ)]−1 , EXP(θ †) = [EXP(θ)]†. (15)

2.3. Unitary operators

In the Hilbert space H we consider the unitary operator U

U = exp

[
i
∑
M,K

a
†
M�MKaK

]
(16)

where � is a d × d Hermitian matrix. It is known (e.g. [6]) that

UaMU † =
∑
K

VMKaK, Ua
†
MU † =

∑
K

V ∗
MKa

†
K

(17)
V = exp(−i�), V V † = 1G .

The vacuum state remains invariant under these transformations. The total number of operator
invariant under these transformations is

nT ≡
∑
M

a
†
MaM = U

[∑
M

a
†
MaM

]
U †. (18)

We next consider a unitary operator θ acting on G. It can be written as θ = exp(iλφ)

where φ is a Hermitian operator and λ is a real number. Using equation (17) in conjunction
with equation (14) we prove that

EXP(θ) = exp

[∑
M,K

a
†
M(ln θ)MKaK

]
= exp[iλUφ], Uφ ≡

∑
M,K

a
†
MφMKaK. (19)

EXP(θ) is a unitary operator, and Uφ is a Hermitian operator. This shows that the general
transformation of equation (16) in H is intimately connected through the exponential Hilbert
formalism to the transformation θ = exp(�) in G.

It is easily seen that

[Uφ,Uχ ] = U[φ,χ]. (20)
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In the special case that φ = 1G we get θ = exp(iλ1G) = eiλ1G and

EXP(eiλ1G) = exp [iλU1] , U1 = nT (21)

U1 is the total number of photons nT .
More generally we assume that a family of operators θ acting on G form a Lie group L

with Hermitian generators φ(1), . . . , φ(m):

θ =
m∏

	=1

exp[iλ	φ
(	)], [φ(	), φ(k)] = c	kjφ

(j) (22)

where λ	 are real numbers and c	kj are the structure constants of the corresponding Lie algebra.
We define the operators

U	 =
∑
M,K

a
†
Mφ

(	)
MKaK (23)

and using equation (20) we show that they form the Lie algebra

[U	,Uk] = c	kjUj (24)

and consequently the operators
m∏

	=1

EXP(exp[iλ	φ
(	)]) =

m∏
	=1

exp[iλ	U	] (25)

form a representation of the Lie group L.
Equation (17) can now be rewritten as

EXP(θ)aM [EXP(θ)]† =
∑
K

aKθ∗
KM, EXP(θ)a

†
M [EXP(θ)]† =

∑
K

a
†
KθKM. (26)

We next consider the subspace Hn spanned by all number states in H with total number
of photons equal to n. The Hilbert space H is clearly the direct sum of all Hn. We call πn the
projection operator onto Hn. It is easily seen that

[πn, EXP(θ)] = [πn,Uφ] = 0. (27)

Therefore these operators leave the spaces Hn invariant, i.e., acting on a state in Hn, produce
another state also in Hn.

3. Displacements in G and the corresponding mode displacements in H

In this section we consider three special cases of the transformations of equation (16). They
have been studied in [2]; but our purpose here is to express them as EXP(θ) where θ is a
transformation in G.

3.1. Fourier transforms

The Fourier transform for modes UF (see also [7]) is given by equation (16) with

� = i ln F, FMK = d−1/2ωMK, ω = exp

(
i2π

d

)
. (28)

The d × d matrix F is the Fourier transform in the context of finite quantum systems (for a
review see [8] and references therein). This leads to

UF aMU
†
F = d−1/2

∑
K

ωMKaK, UF a
†
MU

†
F = d−1/2

∑
K

ω−MKa
†
K. (29)
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In the context of the exponential Hilbert formalism UF can be expressed as

UF = EXP(F †). (30)

We next consider a vector zM in G and with the finite Fourier transform F given in
equation (28) we define the vector z̃K :

z̃K =
d−1∑
M=0

FKMzM. (31)

Then equation (14) gives

EXP(F †) EXP[zM ] = EXP[F †zM ] = EXP [z̃−K ] (32)

which can be rewritten as

UF |{zM}〉coh = |{wM}〉coh, wM =
∑
M

F ∗
MKzK. (33)

We note that

F 4 = 1G → U 4
F = 1H . (34)

3.2. Mode displacements

The mode displacement operator Ux is given by equation (16) with

� = i ln Z, ZMK = ωMδ(M,K). (35)

In this case,

Ux = exp

[
− i2π

d
Ux

]
, Ux =

∑
M,K

a
†
MxMKaK, xMK = Mδ(M,K). (36)

The d × d matrices x and Z are position and displacements operators correspondingly in the
context of finite quantum systems. Ux is the mode position operator. Ux is the exponential of
Ux and performs mode displacements in the mode momentum direction.

The mode displacement operator Up is given by equation (16) with

� = i ln X, XMK = δ(M,K + 1). (37)

In this case,

Up = exp

[
i2π

d
Up

]
, Up =

∑
M,K

a
†
MpMKaK = −UFUxU

†
F

(38)
pMK = d

2π i
�1(M − K).

The d × d matrices p and X are momentum and displacements operators correspondingly
in the context of finite quantum systems. The �1(M − K) has been defined in [2, 8] and it is
the discrete analogue of the derivative of delta function. Up is the mode momentum operator.
Up is the exponential of Up and performs mode displacements in the mode position direction.
The operators Ux and Up form a Heisenberg–Weyl group which has been discussed in [2].

In the context of the exponential Hilbert formalism Ux and Up can be expressed as

Ux = EXP(Z), Up = EXP(X†). (39)

A vector zM in G is displaced with the operators Z, X in the phase space Zd × Zd as
follows:

XzM = zM−1, ZzM = ωMzM. (40)
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Here we use a short-hand notation where zM−1 is a vector whose M-component is equal to the
M − 1 component of the vector zM (the integers belong in Zd , i.e., there is a cyclic structure).
These displacements have been discussed in detail in [8]. A direct consequence of these
relations (using equation (14)) is that

EXP(Z) EXP[zM ] = EXP[ZzM ] = EXP[ω−MzM ]
(41)

EXP(X†) EXP[zM ] = EXP[X†zM ] = EXP[zM+1]

which can be rewritten as

Ux |{zM}〉coh = |{zMω−M}〉coh, Up|{zM}〉coh = |{zM+1}〉coh. (42)

We note that

Xd = Zd = 1G → Ud
x = Ud

p = 1H . (43)

4. A continuum of modes

In the rest of the paper we consider a continuum of modes and the space G is infinite-
dimensional and isomorphic to a harmonic oscillator Hilbert space. The vectors zM with M in
Zd become now functions z(x) with x in R. The space H is now a continuous tensor product.
The usual procedure to convert the various relations from the discrete case to the continuous
one is to take

x = (2π/d)1/2M, p = (2π/d)1/2K (44)

and take the limit d → ∞. Mode displacements, which previously took place in Zd × Zd ,
will now take place in the x − p mode phase space which is the plane R × R.

In this case, the Fourier matrix FMK of equation (28) becomes

Fxy = �x

(2π)1/2
eixy. (45)

The continuous creation and annihilation operators, denoted by a†(x) and a(x), are related to
their discrete counterparts by

a†
x → (�x)1/2a†(x), ax → (�x)1/2a(x), [a(x), a†(y)] = δ(x − y). (46)

The Hilbert space G is separable and it will be convenient to use a countable orthonormal
basis, for example, the Hermitian basis

hN(x) = π−1/42−N/2(N !)−1/2HN(x) exp
[− 1

2x2]. (47)

In this case the function z(x) is replaced with the sequence

zN =
∫

dx hN(x)z(x). (48)

We also introduce the creation and annihilation operators

aN =
∫

dx hN(x)a(x), a
†
N =

∫
dx hN(x)a†(x),

[
aN, a

†
N ′

] = δNN ′ (49)

which are labelled by the discrete variable N which takes the values 0, 1, 2, . . . . We refer
to this as the ‘N-representation’, and to the one in equation (46) as the x-representation.
The x-representation uses ‘physical’ creation and annihilation operators, which act separately
on the physically distinct oscillators at the various points x. In this representation scalar
products involve products of a non-countable set of variables. Such products have been
defined by von Neumann [3], but they are not easy to use in practical calculations. For
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coherent states (and superpositions of a few coherent states) we give below equation (58),
which can be used in practical calculations. The N-representation uses ‘mathematical’
creation and annihilation operators, each of which acts simultaneously on all oscillators in the
continuum with weight hN(x). Its advantage is that N is a discrete variable and scalar products
involve infinite products of a countable set of variables which are easier to use in practice. We
note that the vacuum |0〉 ≡ |0, 0, . . .〉 is the same with respect to both the a(x) and also the
aN operators.

The total number of photons is given by

nT =
∫

dx a†(x)a(x) =
∞∑

N=0

a
†
NaN . (50)

We emphasize the difference between the creation and annihilation operators aN, a
†
N (or

equivalently a(x), a†(x)) in H and ‘creation and annihilation operators’ in G

cG = 2−1/2[x + ip], c
†
G = 2−1/2[x − ip], p = −i∂x. (51)

The former create and annihilate photons in a particular mode. The latter manipulate the
distribution of photons into the various modes; they change the function z(x) which through
the EXP map describes amplitudes of coherent states in the various modes. Similarly the total
number of photons given in equation (50) is a different concept from

NG = c
†
GcG = 1

2

(
x2 − ∂2

x − 1
)
. (52)

4.1. Coherent states

Displacement operators in the N- and x-representations are given by

D({zN }) ≡ exp

[ ∞∑
N=0

(
zNa

†
N − z∗

NaN

)]
(53)

D({z(x)}) ≡ exp

[∫
dx(z(x)a†(x) − z∗(x)a(x))

]
.

We stress that these are displacements in the phase space of each oscillator, and it is a very
different concept from the mode displacements in the x − p mode phase space which we
introduce later.

Coherent states are introduced as

|{zN }〉coh = D({zN })|0〉 (54)

or equivalently as

|{z(x)}〉coh = D({z(x)})|0〉 = exp
[− 1

2 (z(x), z(x))
]

EXP[z(x)] (55)

where (z(x), z(x)) is the scalar product in G given in equation (3) with the summation replaced
here by integration. It is clear that

z(x) =
∞∑

N=0

zNhN(x) → |{z(x)}〉coh = |{zN }〉coh. (56)

Using equation (50) we find that the total number of photons in these coherent states is

nT =
∫

dx|z(x)|2 =
∞∑

N=0

|zN |2. (57)
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The overlap of two coherent states is calculated using equation (5):

coh〈{w(x)}|{z(x)}〉coh = exp
[− 1

2 (w(x),w(x)) − 1
2 (z(x), z(x)) + (w(x), z(x))

]
. (58)

This is useful in practical calculations.
As an example we consider the case

|{zN }〉coh = |{ζzgau(x;A)}〉coh, zN = ζ exp

[
−1

2
|A|2

]
AN

(N !)1/2

(59)

zgau(x;A) = π−1/4 exp

[
−1

2
x2 + 21/2Ax − AAR

]

where A = AR + iAI , and the complex factor ζ has been inserted so that the average number
of photons is |ζ |2. They are special case of coherent states with amplitude which in the
x-representation has Gaussian distribution among the various modes, and in the N-
representation has ‘square root of Poisson’ distribution.

As a second example we consider the case

|0, . . . , 0, z�, 0, . . .〉coh = |{ζh�(x)}〉coh, z� = ζ. (60)

In these coherent states the distribution of the amplitude among the various modes is the
Hermitian h�(x) in the x-representation, and the ζ δ(�,N) in the N-representation.

An important special case is when A = 0 in equation (59), which is equivalent to
zN = ζ δ(N, 0) in equation (60). In this case

|ζ, 0, 0, . . .〉coh = |{ζzgau(x; 0)}〉coh = |{ζh0(x)}〉coh. (61)

4.2. Fourier transform for modes

The Fourier transform for modes UF is given by equation (30) where F is the Fourier transform
in G. Since G is here a harmonic oscillator Hilbert space, F is given by

F = exp
[
i
π

2
NG

]
. (62)

Therefore,

UF = EXP(F †) = EXP
[
exp

(
−i

π

2
NG

)]
= exp

[
−i

π

2
UNG

]
(63)

UNG =
∫

dx a†(x)NGa(x) = 1

2

∫
dx a†(x)

(
x2 − ∂2

x − 1
)
a(x) =

∑
N

Na
†
NaN .

This leads to the relations

UF a(x)U
†
F = (2π)−1/2

∫
dy a(y) exp(ixy)

(64)
UF a†(x)U

†
F = (2π)−1/2

∫
dy a†(y) exp(−ixy)

which are the analogues of equation (29), and also to the relations:

UF aNU
†
F = iNaN, UF a

†
NU

†
F = (−i)Na

†
N . (65)
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5. Mode phase space

5.1. Mode position and mode momentum operators

We consider displacements acting on G

d(α, β, γ ) = exp(−iαx) exp(iβp) exp(iγ 1G) (66)

We have included here the exp(iγ 1G) which simply gives a phase factor to a particular function.
The mode displacements (acting on H) corresponding to each of these terms are

EXP[exp(−iαx)] = exp(−iαUx)

Ux =
∫

dx xa†(x)a(x) =
∞∑

N=0

(
N + 1

2

)1/2 [
a
†
N+1aN + a

†
NaN+1

]
(67)

and

EXP[exp(iβp)] = exp(iβUp)

Up = −i
∫

dx a†(x)∂xa(x) = i
∞∑

N=0

(
N + 1

2

)1/2 [
a
†
N+1aN − a

†
NaN+1

]
(68)

and

EXP[exp(iγ 1G)] = exp(iαU1), U1 =
∫

dx a†(x)a(x) =
∑
N

a
†
NaN = nT . (69)

Taking into account equation (20) we show that

[Ux,Up] = iU1, [Ux,U1] = [Up,U1] = 0. (70)

The Ux and Up in equations (36), (38) are the discrete analogues of the Ux and Up in
equations (67), (68). In order to see this we need to take into account that the function
�1(M − K) in equation (38) is the discrete analogue of the derivative of delta function.

We next consider the subspace Hn spanned by all number states in H with total number of
photons equal to n. The H0 has only one state (the |0, 0, . . .〉), and all the other spaces Hn are
infinite dimensional. We have explained earlier (equation (27)) that all operators Uφ (which
includes Ux,Up) leave the spaces Hn invariant, i.e., acting on a state in Hn, produce another
state also in Hn. Within a particular Hn equation (70) becomes

[Uxπn,Upπn] = inπn. (71)

This can be viewed as a quantum mechanical commutation relation with strength of non-
commutativity (‘Planck constant’) equal to n.

5.2. Mode uncertainties

We consider the operators

Ux2 =
∫

dx x2a†(x)a(x), Up2 = −
∫

dx a†(x)∂2
x a(x)

(72)
U 1

2 (xp+px) = 1

2

∫
dx[a†(x)x∂xa(x) + a†(x)∂xxa(x)].

It is easily seen that

UNG = 1
2 [Ux2 + Up2 − U1]. (73)
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We next consider the coherent state |{z(x)}〉coh of equation (55) and calculate the quantities:

〈nT 〉 =
∫

dx|z(x)|2, 〈Ux〉 =
∫

dx x|z(x)|2, 〈Ux2〉 =
∫

dx x2|z(x)|2. (74)

We define the mode position uncertainty of this coherent state as

�x =
[

〈Ux2〉
〈nT 〉 −

( 〈Ux〉
〈nT 〉

)2
]1/2

. (75)

In a similar way we define the �p. The σxp of this coherent state is given by

σxp =
〈
U 1

2 (xp+px)

〉
〈nT 〉 − 〈Ux〉〈Up〉

〈nT 〉2
. (76)

It is clear that

(�x�p)2 − σ 2
xp � 1

4 . (77)

Using the (〈Ux〉, 〈Up〉) and also the uncertainties �x,�p, σxp we can plot the uncertainty
ellipse of the coherent state |{z(x)}〉coh in the mode phase space x − p. The mode uncertainty
ellipse indicates the location of the quantum state; in the sense that oscillators labelled with
x outside it, are close to the vacuum state. Also the quantum state propagates in the chain of
oscillators, with momenta inside the uncertainty ellipse. This will become more clear below
when we study the time evolution.

General states are superpositions of many coherent states. In order to show how the above
results are generalized to arbitrary states we consider for simplicity the following superposition
of two coherent states

|s〉 = α|{z(x)}〉coh + β|{w(x)}〉coh (78)

where α, β obey the normalization constraint:

|α|2 + |β|2 + exp
[− 1

2 (z(x), z(x)) − 1
2 (w(x),w(x))

]
[αβ∗ e(w(x),z(x)) + α∗β e(z(x),w(x))] = 1.

(79)

We show that

〈s|nT |s〉 =
∫

dx|αz(x) + βw(x)|2

〈s|Ux |s〉 =
∫

dx x|αz(x) + βw(x)|2 (80)

〈s|Ux2 |s〉 =
∫

dx x2|αz(x) + βw(x)|2.
It is seen that the state |s〉 has the same (〈Ux〉, 〈Up〉) and the same mode uncertainties �x,�p

as the coherent state |αz(x) + βw(x)}〉coh; although of course the state |s〉 is not a coherent
state and it is very different from the state |αz(x) + βw(x)}〉coh. These results are easily
extended to superpositions of many coherent states, i.e., to general states.

As an example, we consider the coherent states |{ζzgau(x;A)}〉coh of equation (59), and
we get

〈nT 〉 = |ζ |2, 〈Ux〉
〈nT 〉 = 21/2AR,

〈Up〉
〈nT 〉 = 21/2AI

(81)
�x = �p = 2−1/2, σxp = 0.

Another example is the coherent states |{ζh�(x)}〉coh of equation (60):

〈nT 〉 = |ζ |2, 〈Ux〉 = 〈Up〉 = 0, �x = �p = (
� + 1

2

)1/2
, σxp = 0. (82)
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5.3. General mode displacements

General mode displacements acting on H are given by

D(α, β, γ ) ≡ exp(−iαUx) exp(iβUp) exp(iγU1). (83)

We note that the exponents are linear functions of Ux,Up, i.e., they are quadratic functions of
a(x), a†(x). We show that

exp(−iαUx) exp(iβUp) = exp(iβUp) exp(−iαUx) exp(iαβU1) (84)

and use this to prove

D(α1, β1, γ1)D(α2, β2, γ2) = D(α1 + α2, β1 + β2, γ1 + γ2 − β1α2). (85)

A direct consequence of equation (26) is that

D(α, β, γ )a(x)[D(α, β, γ )]† = [d(α, β, γ )]†a(x)

= exp[i(αx − αβ − γ )]a(x − β)

D(α, β, γ )a†(x)[D(α, β, γ )]† = [[d(α, β, γ )]†a(x)]†

= exp[−i(αx − αβ − γ )]a†(x − β). (86)

The effect of mode displacements on a(x) should be compared and contrasted with the effect
of the displacements of equation (53) on these operators:

D({z(x)})a(x)[D({z(x)})]† = a(x) − z(x) (87)

D({z(x)})a†(x)[D({z(x)})]† = a†(x) − z∗(x) (88)

We next use equation (14) to show that the general coherent states of equation (55) are displaced
as follows:

D(α, β, γ )|{z(x)}〉coh = |{ei(γ−αx)z(x + β)}〉coh. (89)

This is the analogue of equations (42).
As an example, we consider the special case of coherent states given in equation (59) and

using the general result of equation (14), we show that

D(α, β, γ )|{ζzgau(x;A)}〉coh = |{eiφζ zgau(x;A + B)}〉coh
(90)

B = −2−1/2(β + iα), φ = γ + 1
2αβ + 2−1/2(−αAR + βAI ).

Before the displacement, this state is located around the point 21/2A in the x − p mode phase
space viewed as a complex plane, and after the displacement, it is located around the point
21/2(A − B). These relations show again the difference between the mode displacements
of equation (83) and the displacements of equation (53). Mode displacements are collective
displacements of the full state in the chain of oscillators. The displacements of equation (53)
displace the state of each oscillator within its own phase space.

5.4. Mode squeezing

We consider squeezing transformations acting on G
s(r, θ, λ) = exp(ir sin θK1 − ir cos θK2) exp(iλK0)

(91)
K1 = 1

4

(
x2 + ∂2

x

)
, K2 = i

4
(x∂x + ∂xx), K0 = 1

4

(
x2 − ∂2

x

)
where the K0,K1,K2 obey the SU(1, 1) algebra

[K1,K2] = −iK0, [K2,K0] = iK1, [K0,K1] = iK2. (92)
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Using them we define the following mode squeezing transformations acting on H:

EXP[exp(ir sin θK1 − ir cos θK2)] = exp
(
ir sin θUK1 − ir cos θUK2

)
(93)

UK1 = 1

4
[Ux2 − Up2 ], UK2 = i

2
U 1

2 (xp+px)

and

EXP[exp(iλK0)] = exp
(
iλUK0

)
(94)

UK0 = 1
4 [Ux2 + Up2 ] = 1

2UNG + 1
4U1.

Taking into account equation (20) we show that[
UK1 ,UK2

] = −iUK0 ,
[
UK2 ,UK0

] = iUK1 ,
[
UK0 ,UK1

] = iUK2 . (95)

General mode squeezing transformations are defined as

S(r, θ, λ) = exp
(
ir sin θUK1 − i cos θUK2

)
exp

(
iλUK0

)
. (96)

A direct consequence of equation (26) is that

S(r, θ, λ)a(x)[S(r, θ, λ)]† = [s(r, θ, λ)]†a(x)

=
∫

K(x, y; r, θ, λ)a(y) dy

S(r, θ, λ)a†(x) [S(r, θ, λ)]† = [[s(r, θ, λ)]†a(x)]†

=
∫

[K(x, y; r, θ, λ)]∗a†(y) dy (97)

where K(x, y; r, θ, λ) are the matrix elements 〈x|s†(r, θ, λ)|y〉 in the space G. The mode
squeezing of a(x) should be compared and contrasted with squeezing transformations on each
individual oscillator. The latter are performed with the operators

S({r(x), θ(x), λ(x)}) = exp

[∫
dx

(
−1

4
r(x) e−iθ(x)a†(x)2 +

1

4
r(x) eiθ(x)a(x)2

)]

× exp

[
i
∫

dx λ(x)a†(x)a(x)

]
(98)

and they give

Sa(x)S† = µ(x)a(x) + ν(x)a†(x)

Sa†(x)S† = µ∗(x)a†(x) + ν∗(x)a(x) (99)

µ(x) = e−iλ(x) cosh

(
r(x)

2

)
, ν(x) = e−i[θ(x)+λ(x)] sinh

(
r(x)

2

)
.

As an example, we consider the special case of coherent states given in equation (59) and
we show that

S(r, θ, λ)|{ζzgau(x;A)}〉coh = |{ζzsqu(x;A; r, θ, λ)}〉squ (100)

where

zsqu(x;A; r, θ, λ) = ε0 exp(−ε1x
2 + ε2x + ε3)

ε0 = π−1/4(µ − ν)−1/2, ε1 = µ + ν

2(µ − ν)
(101)

ε2 = 21/2A

µ − ν
, ε3 = −µ∗ − ν∗

µ − ν

A2

2
− |A|2

2

µ = e−iλ cosh
( r

2

)
, ν = e−i(θ+λ) sinh

( r

2

)
.
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Mode squeezing changes the widths of the mode uncertainty ellipse. A quantum state is shared
by the oscillators labelled with x inside the mode uncertainty ellipse, and with mode squeezing
the set of these oscillators is reduced (or increased). At the same time the uncertainty in the
momentum with which the state propagates is increased (or reduced).

6. Time evolution

An important property of coherent states is the ‘temporal stability’ [9]. This is the fact that
coherent states evolve into other coherent states. Of course, this depends on the Hamiltonian
of the system. In this section we consider the Hamiltonian

H1 = UNG (102)

where UNG has been given in equation (63). We show that the equations of motion are those
of a harmonic oscillator, and that the general coherent states of equations (54), (55) have the
property of temporal stability with respect to this Hamiltonian.

We prove that

∂tUx = i[H1,Ux] = Up, ∂tUp = i[H1,Up] = −Ux. (103)

They are equations of motion of a harmonic oscillator.
Acting on the general coherent states |{zN }〉coh of equation (54) we easily show that

exp[itH1]|{zN }〉coh = |{zN eiNt }〉coh. (104)

The same result can be expressed in the x-representation for the general coherent states of
equation (55) as

exp[itH1]|{z(x)}〉coh = |{w(x)}〉coh

w(x) =
∫

z(y)K(y, x; t) dy, K(y, x; t) =
∑
N

hN(y)hN(x) eiNt . (105)

In the special case of the coherent states of equation (59) we get

exp[itH1]|{ζzgau(x;A)}〉coh = |{ζzgau(x;A eit )}〉coh. (106)

7. Location and propagation of entanglement

One application of our formalism is the study of entanglement location and propagation.
Entanglement among d modes has been studied extensively in the last few years
(e.g. [10–13]). There are many aspects of this problem. One is to quantify the amount
of entanglement. Another is the distinction between separable and entangled mixed states,
and the study of witness operators [14] which can distinguish between these two cases.

A lot of the early work on entanglement considered a finite number of qubits and more
generally qudits. Continuous variable entanglement that involves a finite number of oscillators
has later been studied [15]. Here we consider the next step which is a continuum of oscillators.
We show how the operators Ux,Up and the mode uncertainty ellipse, which is related to
them, can be used to quantify the location of entanglement, and the speed with which the
entanglement propagates. We do not define a measure of entanglement; this can be a difficult
task in a continuum of oscillators. However, this is not needed for our purposes.

Entanglement is considered with respect to a given tensor product factorization of the
Hilbert space, i.e., with respect to a given set of subsystems. There are many ways of
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factorizing a Hilbert space as a tensor product of other spaces, i.e., of dividing a system
into subsystems. It might be that one of them is ‘physical’ describing physically distinct
subsystems; while the other ones are ‘mathematical’. However it should be stressed that a
state which is entangled with respect to one of these factorizations, might not be entangled with
respect to another. As an example, we consider a simple number state in the N-representation

|1, 1, 0, . . . .〉num = a
†
0a

†
1|0, 0, 0, . . .〉. (107)

This state is factorizable with respect to a tensor product factorization of the Hilbert space
that involves the ‘mathematical oscillators’ described with aN, a

†
N . The same Hilbert space

is the continuous tensor product of the ‘physical oscillators’ described with a(x), a†(x), and
taking into account equation (49) we see that with respect to them the state of equation (107) is
entangled. We will use the term entanglement with respect to the latter ‘physical factorization’
that involves physically distinct oscillators at the various points x.

The mode uncertainty ellipse introduced earlier is applicable to all states; regardless
of whether they are entangled or not. However if the states are entangled, it can be used
to quantify the location of entanglement. In order to exemplify this we consider a system
described with the Hamiltonian H1 of equation (102), which at t = 0 is in the entangled
state

|s(0)〉 = N [|{ζ1zgau(x;A)}〉coh + |{ζ2zgau(x;A)}〉coh]
(108)

N = [
2 + 2 e− 1

2 |ζ1−ζ2|2 cos φ
]−1/2

, φ = �(ζ ∗
1 ζ2).

Then using equation (106) we find that the state |s(0)〉 evolves as follows:

|s(t)〉 = N [|{ζ1zgau(x;A eit )}〉coh + |{ζ2zgau(x;A eit )}〉coh]. (109)

Using equation (80) we find

〈nT 〉 = |ζ1 + ζ2|2
2 + 2 e− 1

2 |ζ1−ζ2|2 cos φ

〈Ux〉
〈nT 〉 = 21/2|A| cos(θA + t),

〈Up〉
〈nT 〉 = 21/2|A| sin(θA + t) (110)

�x = �p = 2−1/2.

The entanglement is located mostly within the interval (〈Ux〉−�x, 〈Ux〉+�x) which performs
an oscillatory motion in time. Oscillators outside this region are close to the vacuum state.
The average momentum of this motion of the entanglement is 〈Up〉 and its uncertainty is �p.

Understanding of various aspects of entanglement in a continuum of modes is highly
desirable since many branches of physics (e.g., particle physics and condensed matter)
work primarily with a continuum of modes. We have introduced the concepts location and
propagation of entanglement using a formalism based on the operators Ux,Up. The next step
is to introduce a measure of entanglement and it is highly desirable that this quantity should be
conserved. Further work is required in this direction. Entanglement of a continuum of parties
is an utmost interesting problem.

8. Discussion

The exponential Hilbert space approach provides an interesting link between quantum
mechanics in a small d-dimensional Hilbert space G and quantum mechanics in a large Hilbert
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space H comprised of d coupled oscillators. Transformations in the small Hilbert space G lead
naturally to collective transformations in H that involve all oscillators.

Using this approach, we have considered a continuum of coupled oscillators (d → ∞)

and introduced the mode position and mode momentum operators whose expectation values
〈Ux〉 and 〈Up〉 describe the average position of the quantum state in the line of oscillators,
and also the average momentum with which it propagates. They obey the commutation
relation of equation (70) and a consequence of this is the uncertainty relation of equation (77).
Oscillators outside the region (〈Ux〉 − �x, 〈Ux〉 + �x) are close to the vacuum state, and also
the propagation of the quantum state in the chain of oscillators occurs with momenta in the
region (〈Up〉 − �p, 〈Up〉 + �p).

The exponentials of Ux and Up are mode displacement operators. Acting on a state
they translate it in the chain of oscillators, and they also change its mode momentum. We
also introduced the operators Ux2 and Up2 and their exponentials which are mode squeezing
operators. Acting on a quantum state, they squeeze its mode uncertainty ellipse.

Assuming that the Hamiltonian of the system is H1 in equation (102), we have shown in
equation (103) that the equation of motion for Ux and Up are similar to those of a harmonic
oscillator. Consequently the coherent states evolve as described in equations (104), (105),
(106).

In the case of entangled states, the formalism can be used to quantify the location of
entanglement and the speed with which the entanglement propagates. For example, in the
case considered in the previous section the entanglement is located mostly within the interval
(〈Ux〉 − �x, 〈Ux〉 + �x) and oscillates in time.

We have considered one-dimensional continuum of oscillators, but generalizations to two
and three dimensions are possible. The work can be used for the description of quantum
phenomena in chains of coupled oscillators.
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